metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jing Wang, Dong-Sheng Zhu,* Kui-Zhan Shao and Lin Xu

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

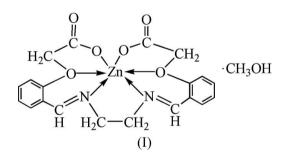
Correspondence e-mail: zhuds206@nenu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.048 wR factor = 0.070 Data-to-parameter ratio = 13.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

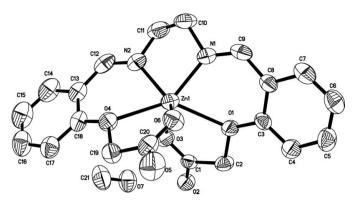
© 2006 International Union of Crystallography


All rights reserved

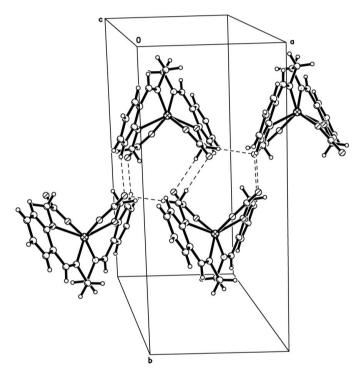
{2,2'-[Ethane-1,2-diylbis(nitrilomethylidyne)]diphenoxyacetato}zinc(II) methanol solvate

The title compound, $[Zn(C_{20}H_{18}N_2O_6)]\cdot CH_3OH$, has been synthesized through a one-step procedure in a methanol solvent. The Zn atom exhibits a distorted trigonal prismatic geometry consisting of two imine N-atom donors, two O-atom donors of the phenoxy groups and two O-atom donors of the deprotonated carboxyl groups. $C-H\cdots O$ interactions stabilize the structure.

Comment


Zinc(II) complexes with polydentate salicylaldehyde Schiff bases have been synthesized and reported extensively as these complexes have important properties and potential applications in different areas (Xiong *et al.*, 1996; Mizukami *et al.*, 2003). Tridentate and tetradentate ligands have been reported by Thompson *et al.* (2000) and Sekerci & Sonmez (2002), while pentadentate and hexadentate ligands have been synthesized by Marvel *et al.* (1956) and Chantarasiri *et al.* (2000, 2004) using triethylenetetramine. However, to our knowledge, sixcoordinated zinc(II)–Schiff base complexes prepared without using triethylenetetramine have not been reported. We have introduced a carboxyl substituent to replace the phenolic H atom, to give O donor atoms instead of the usual methods which add N-donor atoms of amine, and obtained the title compound, (I).

The structure determination indicates that the Zn^{II} ion is coordinated by two imine N atoms, two O atoms of the phenoxy groups and two O atoms of the deprotonated carboxyl groups from the same ligand (Fig. 1). The metal ion shows a slightly distorted trigonal prismatic geometry. The Zn–O(carboxylate), Zn–O(phenoxy) and Zn–N distances (Table 1) are near to the values in other related zinc compounds (Lin *et al.*, 2004). The complex molecule is connected to the methanol molecule through an O–H···O hydrogen bond (Yohannan *et al.*, 2004; Gilli *et al.*, 2005), with an O···O distance of 2.764 (4) Å.


Fig. 2 shows that the crystal packing in (I) is mainly dominated by $C-H\cdots O$ interactions involving atoms O2 and

Received 6 June 2006 Accepted 11 July 2006

Figure 1

View of the molecular structure of (I). H atoms have been omitted.

The crystal packing in (I), showing the $\mathrm{C}\mathrm{-H}\mathrm{\cdot\cdot\cdot}\mathrm{O}$ interactions (dashed lines).

O5, with the C-H···O angles ranging from 156 to 172° and H···O distances ranging from 2.49 to 2.58 Å. These angles and distances are similar to those in related compounds (Desiraju *et al.*, 1990; Guru Row *et al.*, 2004).

Experimental

To a mixture of zinc(II) dichloride (0.136 g, 1 mmol) and *o*-formylphenoxyacetic acid (0.36 g, 2 mmol) in absolute methanol (20 ml) was added ethylenediamine (0.066 g, 1.1 mmol) and triethylamine (0.212 g, 2.1 mmol). After stirring at 333 K for 0.5 h, the solution was filtered. Colourless cubic crystals were obtained by evaporation of methanol at room temperature over a period of 2 d (yield 61%). Analysis calculated for $C_{21}H_{22}N_2O_7Zn$: C 57.62, H 2.98, N 15.51%; found: C 57.79, H 2.86, N 15.62%.

Crystal data

$[Zn(C_{20}H_{18}N_2O_6)] \cdot CH_4O$ $M_r = 479.78$ Monoclinic, P_{21}/c a = 8.200 (2) Å b = 18.274 (5) Å c = 14.191 (4) Å $\beta = 101.974$ (5)° V = 2080.1 (10) Å³

Data collection

Bruker SMART area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.268, T_{\rm max} = 0.304$ (expected range = 0.641–0.727)

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.070$ S = 0.944073 reflections 296 parameters Z = 4 D_x = 1.532 Mg m⁻³ Mo K α radiation μ = 1.23 mm⁻¹ T = 293 (2) K Block, colourless 0.45 × 0.33 × 0.26 mm

11533 measured reflections 4073 independent reflections 2426 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.065$ $\theta_{\text{max}} = 26.1^{\circ}$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0113P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.61 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.36 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

-			
N1-Zn1	2.075 (3)	O3-Zn1	1.961 (2)
N2-Zn1	2.074 (3)	O4-Zn1	2.353 (2)
O1-Zn1	2.389 (2)	O6-Zn1	1.947 (3)
O6-Zn1-O3	115.86 (9)	N1-Zn1-O4	141.94 (10)
O6-Zn1-N1	98.17 (11)	N2-Zn1-O4	77.09 (10)
O3-Zn1-N1	130.87 (11)	O6-Zn1-O1	86.29 (9)
O6-Zn1-N2	130.56 (11)	O3-Zn1-O1	72.55 (9)
O3-Zn1-N2	99.06 (11)	N1-Zn1-O1	75.70 (9)
N1-Zn1-N2	81.87 (12)	N2-Zn1-O1	139.46 (10)
O6-Zn1-O4	73.30 (9)	O4-Zn1-O1	138.21 (7)
O3-Zn1-O4	83.98 (9)		

The H atoms of the ligand were positioned geometrically and refined as riding atoms, with C–H = 0.93 (CH) and 0.97 Å (CH₂), and $U_{\rm iso}$ (H)= 1.2 $U_{\rm eq}$ (C). The H atoms of the methanol molecule were found in difference maps and refined isotropically.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

The authors thank the National Natural Science Foundation of China (grant No. 20371010) for support.

References

- Bruker (1998). SMART (Version 5.0), SAINT (Version 6) and SHELXTL (Version 5). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chantarasiri, N., Chanma, N. & Tuntulani, T. (2000). Eur. Polym. J. 36, 889– 894.
- Chantarasiri, N., Ruangpornvisuti, V., Muangsin, N. & Chaichit, N. (2004). J. Mol. Struct. 701, 93–103.

- Desiraju, G. R., Murty, B. N. & Kishan, K. V. R. (1990). Chem. Mater. 2, 447–449.
- Gilli, P., Bertolasi, V., Pretto, L., Antonov, L. & Gilli, G. (2005). J. Am. Chem. Soc. 127, 4943–4953.
- Guru Row, T. N., Munshi, P., Venugopala, K. N. & Jayashree, B. S. (2004). Cryst. Growth Des. 4, 1105–1107.
- Lin, Y. C., Chang, K. H., Huang, C. C., Liu, Y. H., Hu, Y. H. & Chou, P. T. (2004). Dalton Trans. pp. 1731–1738.
- Marvel, C. S., Dudley, E. A. & Aspey, S. A. (1956). J. Am. Chem. Soc. 78, 4905–4909.
- Mizukami, S., Houjou, H., Nagawa, Y. & Kanesato, M. (2003). Chem. Commun. pp. 1148–1149.
- Sekerci, M. & Sonmez, M. (2002). Pol. J. Chem. 76, 907-914.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Thompson, L. K., Tandon, S. S. & Chander, S. (2000). *Inorg. Chim. Acta*, 300, 683–692.
- Xiong, R. G., Zuo, J. L. & Song, B. L. (1996). Polyhydron, 15, 903–907.
- Yohannan, S., Bowie, J. U., Faham, S., Yang, D., Grosfeld, D. & Chamberlain, A. K. (2004). J. Am. Chem. Soc. 126, 2284–2285.